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This paper investigates the dynamics of velocity gradients for a spatially developing
flow generated by a single square element of a fractal square grid at low inlet
Reynolds number through direct numerical simulation. This square grid-element is
also the fundamental block of a classical grid. The flow along the grid-element
centreline is initially irrotational and becomes turbulent further downstream due to
the lateral excursions of vortical turbulent wakes from the grid-element bars. We
study the generation and evolution of the symmetric and anti-symmetric parts of
the velocity gradient tensor for this spatially developing flow using the transport
equations of mean strain product and mean enstrophy respectively. The choice of low
inlet Reynolds number allows for fine spatial resolution and long simulations, both
of which are conducive in balancing the budget equations of the above quantities.
The budget analysis is carried out along the grid-element centreline and the bar
centreline. The former is observed to consist of two subregions: one in the immediate
lee of the grid-element which is dominated by irrotational strain, and one further
downstream where both strain and vorticity coexist. In the demarcation area between
these two subregions, where the turbulence is inhomogeneous and developing, the
energy spectrum exhibits the best −5/3 power-law slope. This is the same location
where the experiments at much higher inlet Reynolds number show a well-defined
−5/3 spectrum over more than a decade of frequencies. Yet, the Q–R diagram, where
Q and R are the second and third invariants of the velocity gradient tensor, remains
undeveloped in the near-grid-element region, and both the intermediate and extensive
strain-rate eigenvectors align with the vorticity vector. Along the grid-element
centreline, the strain is the first velocity gradient quantity generated by the action of
pressure Hessian. This strain is then transported downstream by fluctuations and strain
self-amplification is activated a little later. Further downstream, vorticity from the bar
wakes is brought towards the grid-element centreline, and, through the interaction with
strain, leads to the production of enstrophy. The strain-rate tensor has a statistically
axial stretching form in the production region, but a statistically biaxial stretching
form in the decay region. The usual signatures of velocity gradients such as the
shape of Q–R diagrams and the alignment of vorticity vector with the intermediate
eigenvector are detected only in the decay region even though the local Reynolds
number (based on the Taylor length scale) is only between 30 and 40.
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1. Introduction

The importance of velocity gradient tensor (VGT) dynamics in turbulent flows has
been fully recognised since the works of Taylor (1938) and Betchov (1956). These
authors established the importance of vortex stretching and strain self-amplification
in relation to the turbulence cascade (see Tsinober 2009). Although their work was
limited to homogeneous isotropic turbulence (HIT), they are still relevant for a wider
range of turbulent flows that are often only locally homogeneous with isotropic small
scales.

In the past three years, a number of authors have started addressing the question of
the spatial evolution of VGT statistics and dynamics in grid-generated turbulence
(Laizet, Vassilicos & Cambon 2013; Gomes-Fernandes, Ganapathisubramani &
Vassilicos 2014; Zhou et al. 2014a, 2015, 2016a,b). The question is of course
wider and should eventually be addressed in various spatially developing turbulent
flows. But grid-generated turbulence (like some other turbulent flows) has two regions:
a production region nearest to the grid where the turbulence intensity builds up till
it reaches a peak value at a certain distance from the grid (Simmons & Salter 1934;
Warhaft & Jayesh 1992; Hurst & Vassilicos 2007; Weitemeyer et al. 2013); and an
immediate adjacent downstream region where the turbulence decays. The question is
to know in which region and where within the region different VGT properties of the
turbulence originate from and how they might correlate with statistics traditionally
attributed to a turbulence cascade, such as the celebrated −5/3 power-law range of
the turbulent energy spectrum.

Experimentally, classical regular grids such as those used by Corrsin and his
collaborators (Comte-Bellot & Corrsin 1966, 1971) are very difficult to use for
this purpose as they are designed in such a way that the production region is
very short. The first and to date the only experimental investigation on the subject
(Gomes-Fernandes et al. 2014) was therefore done with space-filling fractal square
grids where the production region is greatly magnified and therefore more easily
accessible. The first direct numerical simulation (DNS) on the subject (Laizet et al.
2013) was also carried out for space-filling fractal square grids and they showed how
the well-known universal teardrop shape of the Q–R diagram (see Tsinober 2009)
is absent in the grid centreline region where, however, the 2/3 power law for the
second-order structure function of the fluctuating velocity is present. Recall that Q
and R are the VGT’s second and third invariants and the Q–R diagram is the joint
probability density function (JPDF) of Q and R.

A series of DNS studies followed from Nagoya University in Japan (Zhou et al.
2014a,b, 2015, 2016a,b) where the fractal square grid was replaced by a single
square element of the fractal grid (which resembles a hollow square plate). A fractal
square grid is constructed by replicating this element at various length scales. On the
other hand, replicating the element at the same length scale forms a classical grid.
Therefore, this is a fundamental building block for both the classical and fractal grids.
By replacing the fractal grid with its square element, the production region remains
magnified while at the same time isolating the effect of only one of the features of
the fractal grid, the largest square pattern. These studies confirmed the appearance
of the 2/3 power law in the second-order structure function in the very near field
of the grid-element centreline. Other well-known universal properties of the VGT,
such as the teardrop shape of the Q–R diagram and alignments between vorticity and
strain-rate eigenvectors (Ashurst et al. 1987; Tsinober 2009) did also appear quite
further downstream. They also showed that the pressure Hessian at the centreline is
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dominant very close to the element, closer than the point where the 2/3 power law
first appears as one moves in the streamwise direction.

A particular observation made by Laizet et al. (2013) is that the local Reynolds
number based on the Taylor length scale (Reλ) can be relatively small where the 2/3
power law first appears. The studies of Zhou et al. (2014a,b, 2015, 2016a,b) showed
that the well-known universal turbulence properties of the VGT (Q–R diagrams,
VGT alignments, etc.) are present in the decay region even for values of Reλ as
small as 50 or so. An unrelated study by Schumacher et al. (2014) which was
concerned with periodic turbulence, turbulent shear flow between two parallel walls
and thermal convection in a closed container, also identified that some universal
turbulence properties of velocity gradients are present even at relatively modest
Reynolds numbers.

In light of these publications, the motivation for the present work on velocity
gradients in spatially developing flow is threefold. Firstly, to take the observation of
Zhou et al. (2015) concerning the dominance of the pressure Hessian very close to the
grid-element one step further and describe the mechanism of generation of vorticity
(components ωi) and strain-rate tensor (components sij) along the grid-element
centreline and the bar centreline. Secondly, to study VGT statistics at relatively
low Reλ to ensure very good spatial resolution of our DNS and to further test
and explore the idea that some turbulence statistics do not require high Reynolds
numbers to appear. And thirdly, to add to the literature on this subject some hitherto
undocumented strain-rate statistics and some comparisons between low Reynolds
number turbulence generated by single square grid-element and higher Reynolds
number turbulence generated by fractal square grids. The present work reports on
DNS of turbulence generated by a single square grid-element and we compare our
results wherever possible with the laboratory study of turbulence generated by a
space-filling fractal square grid of Gomes-Fernandes et al. (2014) and the DNS
results of Zhou et al. (2014a,b, 2015, 2016a,b).

This paper is organised as follows. Details of the grid-element and the computational
parameters are given in §§ 2 and 3 respectively. Section 4 validates our solver with
the available experimental data. The main findings of this study are discussed in § 5,
and the results are summarised in § 6.

2. Geometrical details of the square grid-element

The present DNS deals with the flow past a single square grid-element of fractal
grid (or simply a square grid-element). A sketch with the basic dimensions and the
coordinate system is shown in figure 1(a). The lateral thickness of the grid-element is
t0 = 43 mm, while the length is L0 = 5.3t0 = 229 mm. The thickness of the grid bar
in the streamwise direction is 6 mm.

The aspect ratio (AR) of the bar, defined as the ratio of the streamwise to the
lateral thickness, is 0.14, and not 1.0 as in the case of classical grids. This is because
we examine the single square pattern of the fractal square grid whose streamwise
thickness is equal to that of the smallest square element. Therefore, this study
considers the streamwise thickness of the fractal square grid used in the studies of
Gomes-Fernandes, Ganapathisubramani & Vassilicos (2012), Gomes-Fernandes et al.
(2014), Laizet, Nedić & Vassilicos (2015a,b).

In the following sections we normalise the streamwise distance with the character-
istic wake-interaction length scale, x∗, defined by Mazellier & Vassilicos (2010).
In order to derive this length scale, it is assumed that the turbulent wake starts
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FIGURE 1. (Colour online) (a) Sketch of the single square grid-element and the coordinate
system. The dotted box and the dot-dashed cut section are the locations where the
computational mesh is shown in figure 2. (b) Mesh resolution along the grid-element
centreline normalised with the local length scale, η, as a function of the normalised
streamwise distance from the grid-element.

immediately downstream of the bar, and thus the laminar and transitional parts of the
wake are neglected. It is known that the wake width of a turbulence generating body
of size t0 grows as

√
t0x in the downstream direction (Townsend 1980). Therefore, the

wakes are expected to meet at a downstream streamwise location which scales with
x∗ where L0≈√t0x∗, and L0 is the distance between the parallel bars. From this, one
can obtain the wake-interaction length scale based on the grid-element parameters as
x∗ = L2

0/t0.

3. Numerical method and computational parameters
Throughout this paper, instantaneous, mean and fluctuating velocity fields are

denoted as u∗i , Ui and ui respectively (where i = 1, 2, 3), and the corresponding
variables for pressure are p∗, P and p. The continuity and momentum equations are
written as:

∂u∗i
∂xi
= 0, (3.1)

∂u∗i
∂t
+ u∗j

∂u∗i
∂xj
=− 1

ρ

∂p∗

∂xi
+ ν ∂

2u∗i
∂xj∂xj

, (3.2)

where ρ, ν are the density and kinematic viscosity respectively.
These equations are solved using our in-house parallel code Pantarhei (Lu &

Papadakis 2011, 2014; Papadakis 2011). This code is an unstructured finite volume
solver that uses a collocated variable arrangement. For spatial discretisation of the
convective and viscous terms, a second-order central differencing scheme is employed,
while the second-order backward differencing scheme is used for the transient term.
The convective term is linearised using a second-order extrapolation of the velocity
u∗j from the previous two time instants while u∗i is treated implicitly. Viscous terms
are also treated fully implicitly. The momentum interpolation method of Rhie &
Chow (1983) is applied to compute the velocities at the cell faces. The code is
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(a) (b)

FIGURE 2. (Colour online) (a) Computational mesh in the y–z plane around the
lower, right corner of the grid-element (outline shown by dotted line in figure 1a).
(b) Computational mesh in the x–y plane at the centre of the grid-element, through the
lower bar (plane shown in figure 1a).

parallelised using the PETSc (portable extensive toolkit for scientific computation)
libraries (Balay et al. 2014). For the solution of the pressure equation the generalised
minimal residual (GMRES) method is used together with the BoomerAMG algebraic
multigrid preconditioner of the Hypre package (Falgout & Yang 2002).

The size of the computational domain is Lx × Ly × Lz = 7L0 × 2L0 × 2L0. The
blockage ratio of the single square grid-element is 20 %, which is the same as in
the experiments reported in Laizet et al. (2015a). The grid-element is placed at a
distance 1.75L0 from the inlet of the computational domain, which is sufficiently large
compared to previous DNS studies (Laizet et al. 2013, 2015a).

The Reynolds number based on the free-stream velocity U∞ and the bar length L0
is ReL0 = 2650, while based on the lateral thickness t0 is Ret0 = 500. The time step
of the simulation is kept constant at 0.015U∞/t0, resulting in a maximum Courant–
Friedrichs–Levy (CFL) number of 0.47. Uniform velocity is prescribed at the inlet,
while a convective outlet boundary condition is used at the exit. No-slip boundary
conditions are applied on the walls, while all lateral boundaries are considered to be
periodic.

The total number of computational cells are 20.4 × 106. The mesh is body fitted
and the cell faces align exactly with the bar walls. The flexibility offered by the
unstructured meshing allows for optimal placement of control volumes. Figure 2
shows the computational mesh for the locations marked in figure 1(a). The distance
between the bar surface and the closest mesh point in the wall-normal direction is
less than 0.15 wall units (i.e. 1n+ < 0.15). This shows that the boundary layers
developing on the bar surfaces are well resolved. The mesh is refined near the walls
to resolve the shear layers that develop after separation from the front sharp corners.
There are approximately 17 cells inside the shear layer closer to the grid-element
(around x/x∗ ≈ 0.02), while there are approximately 24 cells inside the shear layer
thickness around x/x∗ ≈ 0.5.

In the region where the wakes have met, the resolution of the present mesh is
assessed in terms of a local length scale (η) defined as the square root of the ratio
between kinematic viscosity and local standard deviation of fluctuating strain rate, i.e.

η=
√
ν/
√〈sijsij〉, where sij is the turbulent strain rate. This length scale can be used

to characterise the spatial extent over which the local velocity gradients are smoothed
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out by viscosity and is, as such, of general applicability. It actually turns out that this
length scale is the same as the Kolmogorov micro-scale (η= (ν3/ε)1/4) in the case of
fully developed turbulent flows. One can therefore use this length scale to assess mesh
resolution wherever there is fluctuating strain, including in the decaying region where
the entire field is fully turbulent. Figure 1(b) depicts the variation of ratios between
local mesh resolutions ∆x, ∆y, ∆z, ∆ (defined as ∆ = (∆x∆y∆z)

1/3) and the local
length scale, η for x/x∗> 0.2. The dotted lines denote the region where the turbulence
is intermittent, and the solid lines represent the fully turbulent decay region. The
figure shows that the resolution in all directions is always less than one η along the
grid-element centreline. Resolution requirements for a proper DNS have been reported
in Moin & Mahesh (1998), Donzis, Yeung & Sreenivasan (2008). The latter authors
mention that a standard resolution for the second-order quantities (such as the root-
mean-square (r.m.s.) velocities or the energy spectrum which takes very small values
and falls off rapidly at wavenumbers k> 1/η) is 1x/η≈ 2. For higher-order moments
of velocity derivatives and velocity increments (for example fourth-order moments)
resolution down to the Kolmogorov scale is required. It is expected therefore that the
present mesh is sufficiently fine for the computation of all the terms in the balance
equations for enstrophy and strain product. Evidence for this is shown in § 5.

The flow is first allowed to develop for 1 flow-through time and then data are
collected for 10 flow-through times (or 144 000 time steps) to ensure satisfactory
statistical convergence.

4. Comparison with experiments
Figure 3(a) shows instantaneous streamwise velocity contours at plane z/x∗= 0. The

black and pink dotted-dash lines in the figure represent the grid-element centreline and
the bar centreline respectively. The two wakes behind the bars are clearly seen. The
wakes are initially separated by a jet that emerges from the gap between the bars, but
as the wakes grow downstream, they meet intermittently and begin to interact. This
process starts at about x/x∗ ≈ 0.2. Contours of the time-averaged streamwise velocity
are shown in figure 3(b). The flow is highly inhomogeneous in the lee of the grid-
element, but as the wakes interact dispersing momentum in the cross-stream direction,
it becomes more homogeneous further downstream and is already quite homogeneous
at x ≈ x∗, in agreement with the experimental observations of Seoud & Vassilicos
(2007).

In order to validate our DNS, we compare one-point velocity statistics with the
experiments reported in Laizet et al. (2015a). Figure 4(a) shows the time-averaged
streamwise velocity (U) normalised with the free-stream velocity (U∞) along the
grid-element centreline. The velocity profile obtained from our DNS solver agrees
well with the experimental measurements carried out for Reynolds number at least
ten times larger than that of the present study. The velocity profile exhibits a
jet-like behaviour close to the grid-element, followed by a monotonic decay in
the downstream. Note the strong acceleration (by almost 60 %) of the streamwise
velocity compared to U∞ in the lee of the grid-element. The velocity profile peaks
around x/x∗ ≈ 0.1 (i.e. x/L0 ≈ 0.5), and the velocity peak magnitude is expected to
depend on the grid-element blockage and the mesh resolution. For example in the
simulations of Laizet et al. (2015a), this peak is underestimated by approximately
10 % when the coarsest mesh is employed. The effect of blockage on the acceleration
is strong: the square grid-element of Zhou et al. (2014a, 2016a) has a blockage of
11 % (nearly half compared to ours) and their acceleration is less than 20 %.

Note also that for x/x∗ > 0.4 the simulations underpredict the experiments by
approximately 5 %. This can be explained by the difference between the experimental
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FIGURE 3. (Colour online) Contour plots in the x–y plane at z/x∗ = 0: (a) instantaneous
streamwise velocity, (b) mean streamwise velocity. The isocontours range from 1.8 to
−0.75 in units of U∞. The bar centreline and grid-element centreline are marked by
magenta and black dotted-dash lines respectively.
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FIGURE 4. (Colour online) Comparison of (a) mean velocity and (b) streamwise turbulent
intensity along the grid-element centreline with measurements.

and computational set-ups. As mentioned earlier, all lateral boundaries are periodic in
the simulations, while they are solid walls in the experiments. As the wakes expand,
they tilt slightly towards the top and bottom boundaries, as seen in figure 3(b).
Previous simulations (Zhou et al. 2014a) have reported the same finding. In the
experiments, the boundary layers that form along the lateral boundaries act as
a blockage for the flow. As a result, the mean velocity increases in order to
maintain a constant mass flow rate. This leads to a slight underprediction of the
experiments. Valente & Vassilicos (2014) compared the mean and r.m.s. profiles
of the wakes interacting with each other as well as with the lateral wall versus
the wakes interacting each other in a quasi-periodic arrangement. They reported
that the lateral wall surfaces have a meaningful effect on mean and r.m.s. velocity
profiles only in the far downstream region (i.e. after x/x∗> 1.25 as far as the current
simulation is concerned). They also found that the location where the bar wakes
meet is not altered by differences in the lateral boundaries. Therefore, we impose
periodic boundary conditions on the lateral boundaries in order to avoid the large
computational cost associated with the resolution of the near-wall region. Note that
the previous numerical studies on grid turbulence also have periodic lateral boundaries
(Laizet et al. 2013, 2015a; Zhou et al. 2014a,b, 2015, 2016a,b).
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FIGURE 5. (Colour online) Comparison of (a) skewness and (b) flatness of streamwise
fluctuating velocity along the grid-element centreline with experiments.

Figure 4(b) depicts the evolution of the streamwise r.m.s. velocity (urms) normalised
by the local mean velocity (not U∞) along the grid-element centreline. The turbulent
intensity increases from the lee of the grid-element until x/x∗ ≈ 0.5. The region
between x/x∗ = 0 and x/x∗ = 0.5 is termed the production region, and the location
where the turbulent intensity attains its maximum value is called the peak location.
After the peak, urms decreases in the decay region. Experiments and predictions
match reasonably well. The aforementioned effect of boundary layer growth has been
compensated by the normalisation with the local velocity. Note that at x/x∗ = 0,
the predicted r.m.s. value of fluctuating velocity matches well with the experiment
(both values are close to 0). This means that no artificial fluctuations are produced
by the discretisation method upstream of the grid-element. The growth of r.m.s.
velocity from x = 0 to x ≈ 0.5x∗ is also well predicted. Simulating this region is
particularly challenging because the flow transitions from laminar to turbulent as
the turbulent/non-turbulent interfaces from the bar wakes sweep this region. The
success in correctly simulating this region further demonstrates that the employed
mesh resolution is adequate.

The skewness and flatness of streamwise velocity fluctuations are presented in
figures 5(a) and 5(b) respectively where the values corresponding to Gaussian
fluctuating velocities are shown as dotted lines. It can be seen that the turbulence is
highly non-Gaussian in the production region, and then slowly returns to Gaussianity
further downstream (it is reminded that the skewness and flatness of a Gaussian
random variable are 0 and 3 respectively). The comparison with the experiments is
(perhaps surprisingly) good, especially for the flatness. The profiles are smooth which
indicates good convergence of the statistics. Reynolds number effects are strongest in
the location closest to the lee of the grid-element (x/x∗ = 0.1) and this is the region
with the largest deviation from the experiments. Further downstream, there is still
some dependence on Reynolds number, especially for the skewness, but for flatness
this dependency is weak and the matching with the experiments is significantly better.
The skewness of fluctuating velocity S(u) is negative and decreases in the production
region till x/x∗ ≈ 0.4. The value of S(u) remains non-zero but increases continuously
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x/x∗ 0.1 0.25 0.35 0.5 0.75 0.95
Reλ 10.12 22.01 34.49 37.58 39.12 33.12
urms/Ulocal 0.02 0.05 0.11 0.15 0.13 0.11
S(∂u/∂x) −0.11 −0.24 −0.32 −0.34 −0.42 −0.46

TABLE 1. Basic turbulence parameters at the six locations considered along the
grid-element centreline. Here Reλ = urmsλ/ν (λ is the Taylor length scale computed from
λ =√u2/(∂u/∂x)2) and S(∂u/∂x) is the skewness of the fluctuating streamwise velocity
derivative.

towards zero further downstream in agreement with the simple closure calculation of
Maxey (1987) for a decaying homogeneous turbulence. In the work of Zhou et al.
(2014a) the largest negative skewness and positive flatness occur around x/x∗ ≈ 0.2,
while in our case they occur later, at x/x∗ ≈ 0.4. This difference is attributed to the
locations where the wakes start to meet. In their low blockage ratio grid-element, the
wakes meet at x/x∗ ≈ 0.1 while the wakes meet at x/x∗ ≈ 0.2 in the present case.

We probe all three regions (production, peak and decay) by choosing six different
spatial locations along the grid-element centreline. These x/x∗ coordinates along with
their basic turbulence parameters are provided in table 1. The first three points (with
x/x∗ = 0.1, 0.25 and 0.35) lie inside the production region and have the following
characteristics (in the ascending order of x/x∗): point closest to the grid-element; point
where a slope close to −5/3 in the energy spectrum is first observed; point in the
production region with similar Reλ as the last point in the decay region. The fourth
point (x/x∗ = 0.5) is located at the turbulence peak. The final two locations (x/x∗ =
0.75 and 0.95) correspond, respectively, to: the point which has the maximum Reλ;
and the point in the decay region with about the same Reλ as point 3.

Table 1 also records the values of skewness of fluctuating streamwise velocity
derivative, S(∂u/∂x), at all stations. This skewness is very small near the grid-element
but in the decay region it attains values which are closer to those reported in the
literature for homogeneous turbulence. Indeed, Tavoularis, Corrsin & Bennett (1978)
reported that the value of S(∂u/∂x) lies in the range −0.35 to −0.45 for relatively
low Reynolds number turbulence, a fact also recorded in the review of Sreenivasan &
Antonia (1997). Our results are in line with these values in the decay region where
the turbulence is most homogeneous.

5. Results and discussion

We start by studying the characteristics of the flow through the budgets of turbulent
kinetic energy, mean enstrophy and mean strain product. Then we proceed to
establish the relationship between the small-scale terms and energy spectra along
the grid-element centreline. Finally, the invariants of the VGT and geometrical
statistics of small-scale turbulence are discussed.

5.1. Budgets of turbulent kinetic energy, enstrophy and strain rate
The symmetric (strain rate) and antisymmetric (vorticity) parts of VGT are analysed
through the budgets of mean strain product and mean enstrophy respectively. As a
precursor, the budget of mean kinetic energy is discussed first.
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FIGURE 6. (Colour online) (a) Evolution of turbulent kinetic energy along the
grid-element centreline. (b) Turbulent kinetic energy budget along the grid-element
centreline (all terms are normalised by U3

∞/t0).

5.1.1. Turbulent kinetic energy balance
The transport equation of turbulent kinetic energy is (refer to Tennekes & Lumley

1972),

∂

∂t

(
1
2
〈uiui〉

)
= −Uj

∂

∂xj

(
1
2
〈uiui〉

)
︸ ︷︷ ︸

Ck

− ∂

∂xj

(
1
ρ
〈ujp〉

)
︸ ︷︷ ︸

πk

− ∂

∂xj

(
1
2
〈uiuiuj〉

)
︸ ︷︷ ︸

Tk

+ ∂

∂xj
(2ν〈uisij〉)︸ ︷︷ ︸

Dk

−〈uiuj〉Sij︸ ︷︷ ︸
Pk

−2ν〈sijsij〉︸ ︷︷ ︸
εk

, (5.1)

where sij and Sij are the fluctuating and mean strain rates respectively,

sij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (5.2)

Sij = 1
2

(
∂Ui

∂xj
+ ∂Uj

∂xi

)
. (5.3)

In (5.1), Ck denotes the convection due to mean flow, πk represents the pressure
work, Tk corresponds to the transport by fluctuations, Dk stands for viscous diffusion,
the production of turbulent kinetic energy by mean flow is Pk and the dissipation of
turbulent kinetic energy is denoted by εk.

The streamwise evolution of turbulent kinetic energy along the grid-element
centreline is shown in figure 6(a). In the production region, the turbulent kinetic
energy increases from zero to a peak value. This increase is gradual for x/x∗ < 0.2
where the flow is mostly irrotational, and steeper for 0.2 6 x/x∗ 6 0.4 where the
turbulence is developing. The kinetic energy decreases in the decay region (i.e. for
x/x∗ > 0.5).

The budget of turbulent kinetic energy along the grid-element centreline is depicted
in figure 6(b) where all the terms in (5.1) are normalised by U3

∞/t0. For statistically
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FIGURE 7. (Colour online) (a) Evolution of turbulent kinetic energy along the bar
centreline. (b) Turbulent kinetic energy budget along the bar centreline (all terms are
normalised by U3

∞/t0).

stationary flows, as the one considered in this paper, the transient term on the
left-hand side is zero. Figure 6(b) shows that the grid-element centreline turbulent
kinetic energy budget is markedly different from some previously reported budgets for
boundary layer (Mansour, Kim & Moin 1988) and backward facing step (Le, Moin
& Kim 1997). The distinguishing feature here is the absence of production term, Pk.
The turbulent kinetic energy along the grid-element centreline is not the result of
mean-flow gradients producing turbulent fluctuations, as in wall-bounded shear flows.
In the region 0 6 x/x∗ < 0.2, the rise of energy is due mainly to pressure work. As
we show in the next section, this part of the grid-element centreline is dominated by
irrotational flow. Around x/x∗ ≈ 0.2, the transport by turbulent fluctuations becomes
the term responsible for the turbulent kinetic energy growth. This is the direct result
of wakes starting to reach the grid-element centreline and meet around that location
and thereby transporting turbulent kinetic energy towards the grid-element centreline.
From x/x∗ ≈ 0.2 to the end of the production region, transport by fluctuations is
counteracted by viscous dissipation, pressure work and mean advection. At the start
of the decay region, the mean-flow advection term changes its sign and is mainly
balanced by viscous dissipation in most of the decay region. The budget analysis
reveals that the flow along the grid-element centreline is initially irrotational and
becomes turbulent due to lateral infiltration of turbulent wakes from the grid-element
bars.

The turbulent kinetic energy profile along the bar centreline is given in figure 7(a).
The turbulent intensity increases up to x/x∗≈ 0.13 along the bar centreline due to the
deformation of the Reynolds stress tensor by the mean velocity gradients (production
term, Pk) and the pressure work, πk (refer to figure 7b). Notice that Pk is now the
dominant term, but πk is still important. The contribution of Pk would have been
even stronger if the budget analysis was performed along the core of the shear
layer emanating from the top (or the bottom) face of the bar. This region has the
strongest strain rate, refer to figure 3. Near the bar, Pk and πk are balanced by the
sum of turbulent transport and dissipation. Further downstream, the mean turbulent
kinetic energy starts to decay as the contribution of pressure work and mean velocity
gradients decrease. In the far downstream (i.e. after x/x∗> 0.4), the mean flow carries
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the turbulent kinetic energy, and it is balanced by dissipation. Figures 6(b) and 7(b)
also show that the mean turbulent kinetic energy equation is properly balanced in our
simulations.

5.1.2. Mean enstrophy balance
The transport equation for mean enstrophy 〈ωiωi〉 is given by (refer to Tennekes &

Lumley 1972),

∂

∂t

(
1
2
〈ωiωi〉

)
= −Uj

∂
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1
2
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︸ ︷︷ ︸
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2
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+〈ωiωj〉Sij︸ ︷︷ ︸
αω

+〈ωisij〉Ωj︸ ︷︷ ︸
βω

+ν ∂2
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〈
1
2
ωiωi

〉
︸ ︷︷ ︸

νω

−ν
〈
∂ωi

∂xj

∂ωi

∂xj

〉
︸ ︷︷ ︸

εω

, (5.4)

where ωi and Ωi are the components of the vorticity vector of the fluctuating and
time-averaged fields respectively and are given by

ωi = εijk
∂uk

∂xj
, (5.5)

Ωi = εijk
∂Uk

∂xj
, (5.6)

where εijk is the Levi-Civita symbol. In (5.4) Cω is the advection by mean flow, Gω

represents the production by mean field, Tω is the transport by turbulent fluctuations,
Pω is the enstrophy production by stretching of fluctuating strain rate, αω corresponds
to production (or removal) of enstrophy by stretching (or squeezing) due to mean
strain rate, βω is the mixed production term while νω and εω represent viscous
diffusion and dissipation of enstrophy respectively.

The profile of mean enstrophy along the grid-element centreline is depicted in
figure 8(a). In the lee of the grid-element (x/x∗ < 0.2) the enstrophy is almost zero.
Therefore, the flow in this part of the grid-element centreline maybe considered
irrotational, which also implies non-turbulent. The mean enstrophy increases slowly
after x/x∗ > 0.2 and it continues to increase until the turbulence peak at x/x∗ = 0.5.
Further downstream in the decay region, the enstrophy continuously decreases.

Further physical insight on the observed variation of enstrophy can be gained
from the budget of enstrophy (figure 8b). Every term in equation (5.4) is normalised
by (U∞/t0)

3. The budget demonstrates that all the terms are nearly zero for the
irrotational flow part of the grid-element centreline (i.e. for x/x∗ < 0.2). Moving
further from this location, the first term in space to contribute to the generation of
mean enstrophy is the turbulent transport term, Tω. The physical mechanism, therefore,
is clear: vorticity, which is produced at the grid-element surface due to the no-slip
boundary condition, is first shed into bar wakes and then transported towards the
grid-element centreline through the bar wakes that disperse vorticity in the lateral
directions. Vorticity reaches the grid-element centreline at x/x∗ ≈ 0.2. Interestingly,
the skewness and flatness (shown in figure 5) are close to their Gaussian values of 0
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normalised by (U∞/t0)

3).

and 3 respectively exactly at this point, and deviate from them further downstream in
the production region. In particular, the skewness becomes negative which indicates
the presence of strong negative fluctuations. These decelerations correlate with the
intermittent interaction between the two wakes in the part of production region where
x/x∗ ≈ 0.2 (see Melina, Bruce & Vassilicos (2016) for further information on this
point).

Shortly after the action of Tω, the other terms in the transport equation start to
become active. For example, after x/x∗ = 0.25, the fluctuating strain field stretches
the (small amount of) existing transported vorticity causing further production of
enstrophy (Pω term). Both Tω, Pω are positive leading to the very rapid growth of
〈ωiωi〉 (figure 8a). These two terms are balanced by advection due to mean flow and
viscous dissipation.

Turbulent and mean transport terms grow in the production region but are reduced
to small values at the peak location. Further downstream in the decay region, Pω and
εω become the dominant terms that balance each other. It is worth mentioning here
that the terms involving mean velocity gradients do not contribute to the transport
of enstrophy anywhere on the grid-element centreline even in the production region,
although this region is highly inhomogeneous.

Figure 9 illustrates the dynamics of fluctuating enstrophy along the bar centreline.
The mean enstrophy profile (figure 9a) appears to be qualitatively similar to that of
the bar centreline turbulent kinetic energy with values peaking at the same location
x/x∗ ≈ 0.13. Figure 9(b) reveals that once the vorticity is shed into the bar wake, it
is continuously stretched by the fluctuating strain rate throughout the bar centreline.
Close to the bar, the increase in mean enstrophy is mostly because of the vortex
stretching (Pω term). Mechanisms such as the stretching of vorticity by mean strain
(αω), and the production due to mean vorticity gradients (Gω) also contribute to
the growth of enstrophy in the near-bar region although their contribution is small
compared to that of the vortex stretching. Further downstream, the vortex stretching
term is in balance with the dissipation of enstrophy, and all other terms are negligible
(figure 9b). Although the mean and turbulent transport terms are the significant budget
terms along the grid-element centreline, their contribution to the mean enstrophy
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FIGURE 9. (Colour online) (a) Evolution of mean enstrophy along the bar centreline.
(b) Budget of mean enstrophy along the bar centreline (all terms are normalised by
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3).

budget is minimum along the bar centreline. This budget analysis also shows that the
mixed production term (βω) does not contribute to the transport of mean enstrophy
along both the grid-element centreline and the bar centreline.

Tennekes & Lumley (1972) predicted that Pω and εω are the dominant terms in
(5.4). Their prediction appears to be valid on the bar centreline. On the grid-element
centreline, however, our DNS reveals that the turbulent and mean transport terms are
also equally important, in particular in the production region. All other terms are
predicted to be significantly smaller by Tennekes & Lumley (1972) and our simulation
confirms that they are indeed negligible.

The balancing of mean enstrophy equation (figures 8b and 9b), while not absolutely
perfect, is definitely within acceptable limits. Our choice of low Reynolds number has
been essential in achieving this and it is the first time such a point balance is reported
in a study of a spatially developing flow. For channel flow it has been reported by
Sandham & Tsinober (2000).

5.1.3. Mean strain-product balance
The transport equation for mean strain product 〈sijsij〉 is (refer to Tsinober 2009),
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, (5.7)

where Cs is the mean-flow advection, αs is the production by mean strain field, Ts is
the turbulent transport, βs is the production due to stretching by mean strain rate, νs is
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FIGURE 10. (Colour online) (a) Evolution of mean strain product along the grid-element
centreline. (b) Budget of mean strain product along the grid-element centreline (all terms
are normalised by (U∞/t0)

3).

the mixed production term, Ps is the production due to stretching by fluctuating strain
field (also known as the strain self-amplification term). The enstrophy production term
(ωs) also appears in the transport equation of mean strain product but with a negative
sign and premultiplied by (−1/4), πs is the strain pressure Hessian correlation term
and εs is the viscous dissipation term.

Figure 10(a) depicts the profile of mean strain product along the grid-element
centreline. The profile of 0.5〈ωiωi〉 is also plotted in the same figure. Although the
flow in the vicinity of grid-element (x/x∗ < 0.2) does not contain any significant
enstrophy, it does possess strain (figure 10a). The dissipation of turbulent kinetic
energy is directly proportional to the strain product, εk = 2ν〈sijsij〉, so this is a region
of mostly irrotational dissipation. The strain increases rapidly after x/x∗ > 0.2 until
the peak region, and then decreases in the decay region. Note that 0.5〈ωiωi〉 ≈ 〈sijsij〉
is not valid in the production region (see also table 3). Recall that in homogeneous
turbulence it is straightforward to prove analytically that 0.5〈ωiωi〉 = 〈sijsij〉. The
dominance of strain product over enstrophy in the production region is also observed
in the low blockage grid-element simulations of Zhou et al. (2016b).

Figure 10(b) shows the budget of mean strain product along the grid-element
centreline. Each term is normalised by (U∞/t0)

3. Unlike the budget of enstrophy,
some of the terms are active in the region of x/x∗ < 0.2. It is of interest to magnify
this region to see what really contributes to the generation of small-scale strain where
there is no vorticity. A magnified view of figure 10(b) for x/x∗ < 0.2 is shown in
figure 11. The first term to become active along the grid-element centreline is the
strain pressure Hessian. This term is balanced by nothing else than the convection
due to mean flow for x/x∗< 0.14. The pressure Hessian acts on the fluid elements to
produce strain in the region where enstrophy is absent. It is clearly a non-local effect.
Therefore, the mean strain-product equation for x/x∗ < 0.14 can be simplified as,

Uk
∂

∂xk

(
1
2
〈sijsij〉

)
≈−

〈
sij

∂2p
∂xi∂xj

〉
. (5.8)

The importance of the pressure Hessian term in the vicinity of the grid-element was
observed by Zhou et al. (2015) when the conditional mean trajectories of the Q, R
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invariants in the Q–R plane were computed. It was not however directly identified as
the dominant generating mechanism for strain in the lee of the grid-element, as we
show in the present paper.

Once strain is produced by pressure Hessian, it is then transported by fluctuations
as can be seen from figure 11, where the Ts term becomes active after x/x∗ ≈ 0.14,
acting to increase 〈sijsij〉. This transport, however, is not due to the lateral fluctuations,
but due to the streamwise fluctuations which are generated by the pressure work
mechanism, as discussed in § 5.1.1. The increase of small-scale strain leads to turning
on of the strain self-amplification which starts being very significant from x/x∗ ≈ 0.2.
Therefore, equation (5.7) can be simplified for 0.14< x/x∗ < 0.2 as,
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2
∂
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∂2p
∂xi∂xj

〉
. (5.9)

Looking now at figure 10(b), the strain pressure Hessian term eventually becomes
a sink after x/x∗ ≈ 0.25. Around that location, enstrophy has been brought towards
the grid-element centreline as discussed earlier and the presence of small-scale strain
brought about by the dynamics in (5.8) and (5.9) initiates the vortex stretching term
as seen in figures 10(b) and 8(b). From then on, vortex stretching and dissipation by
viscosity become sinks of 〈sijsij〉. Therefore, for 0.25 < x/x∗ < 0.5, the transport of
mean strain product is due to transport by fluctuations and strain self-amplification
which are balanced by the sum of strain pressure Hessian, dissipation by viscosity,
vortex stretching and convection due to mean flow. This can be written in equation
form as,
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FIGURE 12. (Colour online) (a) Evolution of mean strain product along the bar centreline.
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(U∞/t0)

3).

This analysis of mean strain product suggests that there are two subzones in the
production region. One is the ‘strain-dominant’ zone where only strain is effectively
present, and the other one is located adjacent to it further downstream where both
strain and vorticity coexist.

In the decay region, the pressure Hessian term becomes zero and transport due to
fluctuations becomes a homogenising consuming term. The mean convection term and
the strain self-amplification term are balanced by enstrophy production (stretching),
transport by fluctuations and dissipation. Therefore, the transport equation of mean
strain product in the decay region can be written as,

Uk
∂

∂xk

(
1
2
〈sijsij〉

)
≈−1

2
∂

∂xk
〈uksijsij〉 − 〈sijsjkski〉 − 1

4
〈ωiωjsij〉 + ν〈sij∇2sij〉. (5.11)

The mean velocity gradient terms such as αs, βs and νs do not contribute to the
transport of mean strain product even in the inhomogeneous production region. The
same was observed in the transport equation for enstrophy.

Unlike the grid-element centreline, strain and vorticity coexist throughout the bar
centreline (see figure 12a). The dynamics of the strain product and its budget along
the bar centreline, as shown in figure 12(b), is similar to that of the bar centreline
mean enstrophy discussed in the previous section. Here also, the turbulent stretching
of fluctuating strain is the most dominant term, while the gradient production and
stretching by mean strain rate contribute only marginally to the production of mean
strain product. Compared to the enstrophy budget, the only difference is the presence
of the strain pressure Hessian correlation term that acts as a source in a near-bar
region, and eventually becomes a sink further downstream. Far downstream, strain
self-amplification is balanced by viscous dissipation.

Here also, the balancing of budgets in the mean strain product is not perfect, yet
the percentage error is minimal which makes these results acceptable. We repeat that
this is the first time that such numerically well-balanced equations are presented in a
study of this kind.



www.manaraa.com

312 I. Paul, G. Papadakis and J. C. Vassilicos

We close this subsection by discussing the effect of aspect ratio AR on the near
field. As mentioned in § 2, the AR of the examined grid-element is 0.14, while in
classical grids it is equal to 1. It is intuitive to expect that the AR of the bar will
influence the near field, both in terms of size of the production region as well as
the maximum r.m.s. velocity in the wake. To estimate the size of the production
region, we can employ a similarity argument. Gomes-Fernandes et al. (2012) defined
a modified wake-interaction length scale, denoted as x∗′, that was found to collapse
the spatial variation of the normalised turbulent intensities for various grids. The
definition of x∗′ uses the drag coefficient (CD) of the bar, which is sensitive to AR.
Bearman & Trueman (1972) measured the CD values of rectangular cylinders of
different AR values. CD increases with AR, reaches a maximum value of 3 around
AR≈ 0.6, and then is reduced. This trend is found to be true also for low Reynolds
number transitional flows (refer to Norberg 1993). Interestingly, for AR = 1.0 and
0.14, the CD values are found to be very similar, CD≈ 2. Consequently, the modified
wake-interaction length scale x∗′ of the classical grid-element with AR= 1.0 will be
very close to one for the current grid-element. Based on this similarity argument,
we expect the size of the production region for the two ARs to be close to each
other. To the best of our knowledge, there are no similarity variables to predict the
maximum r.m.s. values. Therefore one needs to perform additional simulations in
order to confirm the prediction of the above similarity argument for the size of the
production region as well as to compute the maximum turbulent intensity.

5.2. Energy spectra
Having understood the mechanism whereby the small-scale terms of turbulence are
generated in this developing flow, this section investigates the relation between the
small-scale terms and the energy spectra along the grid-element centreline.

Gomes-Fernandes, Ganapathisubramani & Vassilicos (2015) and Laizet et al.
(2015b) obtained the energy spectra for turbulence generated by a fractal grid. Both
studies confirmed that the −5/3 power-law slope exists for the energy spectrum, even
in the production region where the turbulence is only developing, non-Gaussian and
inhomogeneous. In fact, Laizet et al. (2015b) noted that, on the centreline, the −5/3
power law first appears half-way between x = 0 and the turbulence peak. The DNS
results of Laizet et al. (2013) for fractal grid turbulence and of Zhou et al. (2016b)
for a single square grid-element turbulence confirm this finding on the 2/3 power-law
exponent of the second-order structure function. Clearly, this power-law behaviour in
the energy spectrum is not related to the Kolmogorov theory (Kolmogorov 1941) as
none of the assumptions made in the Kolmogorov theory is valid in this region.

Figure 13 depicts the energy spectra obtained at all locations considered in the
present study. Very close to the grid-element, where the flow is irrotational, the
energy spectrum shows a pronounced vortex shedding signature with a normalised
frequency (Strouhal number) ft0/U∞ = 0.21 (figure 13a). It is interesting that this
shedding frequency is already found at a location in the grid-element centreline
where the wakes have not yet met and the flow is irrotational. This indicates that it
is probably the result of a global three-dimensional instability of the flow. As can be
seen in figure 13(a), the energy content of this frequency is low (as expected since
this point is not directly immersed in the wake) and there is no power law with
a −5/3 slope. On the other hand, as depicted in figure 13(b), a power law in the
energy spectrum with slope close to −5/3 is first observed at x/x∗= 0.25, for at least
half a decade of frequency. The point x/x∗ = 0.25 is exactly half-way between x= 0
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and the turbulence peak which is where Gomes-Fernandes et al. (2015), Laizet et al.
(2015b) found the best −5/3 power-law slope defined for a wide range of frequency.
From the previous section, it is known that x/x∗ = 0.25 is the location where the
turbulence is developing and inhomogeneous. The limited frequency range of −5/3
in our spectrum is consistent with the fact that the Reynolds number is particularly
low. In fact, the local Reλ is only 22.01 at x/x∗ = 0.25 (see table 1) and it can be
surprising that a −5/3 power law exists at all, even in such a narrow frequency
range. This result is in agreement with the observations made by Gomes-Fernandes
et al. (2015), Laizet et al. (2015b) albeit at much higher Reynolds numbers, which
explains why their −5/3 power law at a location midway between the grid-element
and turbulence peak was defined over at least one decade of frequency.

The energy spectra in the further downstream locations of the developing region
(i.e. x/x∗< 0.5) also exhibit a restricted −5/3 power law and a less pronounced vortex
shedding signature as seen in figure 13(c,d). However, the −5/3 slope is progressively
eroded in these locations (see figure 13c,d) compared to the spectra at x/x∗ = 0.25
(figure 13b). The erosion of the 2/3 power law from the near field to the downstream
in the second-order structure function, directly related to the −5/3 law of the spectra,
was also observed by Zhou et al. (2016b). It should be reminded that the Kolmogorov
theory is not applicable in this developing turbulence region.

The energy spectra at the fully developed turbulent region are represented in
figures 13(e) and 13( f ). At these locations, the Kolmogorov theory is applicable as
flow in the region of x/x∗ > 0.5 is fully turbulent and homogeneous (refer to § 5.1).
Note that the local Reλ of this region is considerably higher than that of x/x∗ = 0.25
(see table 1). Yet, the frequency range of −5/3 power-law slope is shorter compared
to the frequency range observed at x/x∗ = 0.25.

The energy spectrum in figure 13(b) appears to acquire a shape which includes
a short range reminiscent of a −5/3 power law at the start of the subregion where
(5.10) holds and where strain self-amplification and vortex stretching have only
just started being both significantly present. This is also the subregion where the
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x/x∗ 0.1 0.25 0.35 0.5 0.75 0.95 Field
experiment

Grid

〈ωiωjsij〉/〈sijsij〉3/2 1.04× 10−6 0.39 0.46 0.53 0.45 0.38 0.16 0.27
−〈sijsjkski〉/〈sijsij〉3/2 0.05 0.86 0.42 0.35 0.32 0.29 0.23 0.22
−〈ωiωjsij〉/〈sijsjkski〉 1.5× 10−5 0.45 1.09 1.51 1.45 1.31 0.7 1.2
Reλ 10.12 22.01 34.49 37.58 39.12 33.12 104 257

TABLE 2. Values of normalised 〈ωiωjsij〉, 〈sijsjkski〉 and their ratios at different stations
along the grid-element centreline. The values of field experiment are taken from Gulitski
et al. (2007) and the grid experiment is taken from the decay region of Gomes-Fernandes
et al. (2014).

pressure Hessian acts like a sink. The spectral range which is emulating a short
−5/3 power law does not grow but in fact diminishes as vortex stretching and
strain self-amplification increase to their maximum values at x= 0.5x∗ and this range
continues to diminish further downstream in the decay region. These conclusions
echo those of Laizet et al. (2013), Gomes-Fernandes et al. (2015) and Laizet et al.
(2015b) who obtained energy spectra at much higher Reynolds numbers but were
not able to have as much concurrent detail on the small-scale strain and vorticity
dynamics as we have here.

5.3. Enstrophy production and strain self-amplification
Having identified the mechanism whereby small-scale strain rate and vorticity
fluctuations are amplified, as well as their association with the energy spectra, we
now turn our attention to the statistical study of two of the most important velocity
gradient terms which contribute to the generation of mean enstrophy and strain
product along the grid-element centreline: mean enstrophy production 〈ωiωjsij〉 and
mean strain self-amplification 〈sijsjkski〉. We discuss their statistics in this subsection.

It was already shown in figures 8(a) and 10(a) that the mean enstrophy production
and strain self-amplification increase in the production region, and then in the decay
region their values decrease. Table 2 records the values of these quantities normalised
by 〈sijsij〉3/2. The normalised values of 〈ωiωjsij〉 and 〈sijsjkski〉 decrease from the
turbulence peak onwards. These quantities are compared against the reference values
taken from the grid and field experiments. It can be seen that the normalised values
decay in the region x/x∗ > 0.5 allowing for the possibility that they might tend
towards values comparable to the reference values given in the table. However, there
is of course no guarantee that this is indeed so, and our simulation is not long
enough in the streamwise direction for us to check. The ratio of 〈−ωiωjsij〉/〈sijsjkski〉
is also given in the table and compared with the reference value taken from the
classical grid experiment. The reference value is close to the ratio 4/3(= 1.33) for
homogeneous turbulence (Tsinober 2009). The value of (4/3) is also closely predicted
by our simulations at the downstream end of the computational domain. Besides, the
variation of 〈−ωiωjsij〉/〈sijsjkski〉 in our simulation qualitatively agrees with the low
blockage grid-element simulations of Zhou et al. (2016a).

Comparison of the normalised enstrophy production and self-amplification values
with the values reported by Gomes-Fernandes et al. (2014) (table 6 in their paper)
reveals some differences. In their study, the ratios of 〈ωiωjsij〉 and 〈sijsjkski〉 to
〈sijsij〉3/2 are 12 % and 10 % respectively in the middle of the production region
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FIGURE 14. (Colour online) Probability density function (PDF) of enstrophy production
at different locations along the grid-element centreline: (a) x/x∗ = 0.1, (b) x/x∗ = 0.25,
(c) x/x∗ = 0.35, (d) x/x∗ = 0.5, (e) x/x∗ = 0.75, ( f ) x/x∗ = 0.95.

and then they increase to 21 % and 26 % in the decay region. In the present study,
however, these ratios are much larger, as can be seen from table 2. The reason for
this difference is that the denominator 〈sijsij〉3/2 is small in our production region,
but increases very rapidly further downstream as shown in figure 10(a). In fact, it
increases by a factor of 7 from the middle of the production region to the peak. On
the other hand in figure 10 of Gomes-Fernandes et al. (2014), 〈sijsij〉 increases by
approximately a factor of 2 only. This suggests that the fractal grid produces a more
homogeneous strain field compared to the single square grid-element. This may not
be only due to the multi-scale space filling properties of the grid (i.e. the presence
of bars of different sizes that homogenise the flow), but also to the fact that their
incoming flow carries significant turbulence intensity, and therefore strain.

It is interesting to note that at x/x∗ = 0.25, where the wakes have already met,
the turbulence is developing and the energy spectrum has a −5/3 power-law slope
(from our simulation but perhaps more importantly from the higher Reynolds number
measurements and simulations of Laizet et al. (2013), Gomes-Fernandes et al. (2015)
and Laizet et al. (2015b)), the mean strain self-amplification dominates the mean
enstrophy production at least by a factor of two. This observation correlates the
emergence of −5/3 energy spectra with the dominance of strain self-amplification
process rather than of vortex stretching. Downstream of x/x∗ = 0.25, the mean
enstrophy production soon dominates over mean strain self-amplification, but the
−5/3 slope in the energy spectrum gradually weakens. It seems that the strain
self-amplification is more essential for the energy spectrum’s −5/3 power-law shape
than vortex stretching even though 〈ωiωjsij〉 > 0 (as is in fact the case) signifies
prevalence of vortex stretching over vortex compression.

The PDFs of enstrophy production are shown in figure 14 for all the locations
considered in this study. The PDF looks almost symmetric in the irrotational flow
grid-element centreline region with the negligible values of ωisijωj (figure 14a). At
x/x∗ = 0.25, where the slope in the energy spectrum is first observed to be −5/3,
the PDF of ωisijωj is clearly skewed towards positive, as seen in figure 14(b). This
indicates that vortex stretching is preferred over vortex compression at the onset
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FIGURE 15. (Colour online) PDF of strain self-amplification at different locations along
the grid-element centreline: (a) x/x∗= 0.1, (b) x/x∗= 0.25, (c) x/x∗= 0.35, (d) x/x∗= 0.5,
(e) x/x∗ = 0.75, ( f ) x/x∗ = 0.95.

point of −5/3 slope in the energy spectrum where the turbulence is still developing
and inhomogeneous. This is an interesting result as the experimental study of fractal
grid turbulence by Gomes-Fernandes et al. (2014) reported that the tendency for
vortex stretching dominance is not evident in the inhomogeneous production region
of fractal grid (see § 4.2 on p. 268 of Gomes-Fernandes et al. (2014)). A plausible
reason for this discrepancy is discussed in § 5.5.2 with the help of the intermediate
strain-rate eigenvalue λ2. In all other locations beyond x/x∗= 0.25, the PDF of ωisijωj
is skewed towards positive, signifying the prevalence of vortex stretching over vortex
compression, which is a universal characteristic of small scales in turbulent flows
(Taylor 1938; Betchov 1975; Tsinober, Kit & Dracos 1992; Tsinober et al. 1995).
It is interesting that this universal result is obtained for Reλ as low as 33 in our
decay region where the turbulence is fully developed and homogeneous. Although
we notice differences in the near-grid-element PDF of ωisijωj when compared against
the experimental result of Gomes-Fernandes et al. (2014), our results agree with the
DNS result of Zhou et al. (2016a).

The PDFs of strain self-amplification are depicted in figure 15. At the irrotational
flow grid-element centreline, the PDF of sijsjkski is nearly symmetric with very small
values of sijsjkski (figure 15a). From figure 15(b–f ), it can be observed that the PDFs
are skewed towards a negative average in the regions where the wakes have met,
which is also considered to be a universal characteristic of turbulent flows (Tsinober
2000, 2009). Again the universal statistical behaviour of strain self-amplification
is noted for very low Reλ values of homogeneous fully developed turbulence (see
figures 15e and 15f ). Gomes-Fernandes et al. (2014) and Zhou et al. (2016a) also
reported negative average values of strain self-amplification in the production region.

5.4. Invariants of the velocity gradient tensor
The next objective is to test the validity of other potentially universal characteristics
of the invariants of VGT for the low Reynolds number turbulence considered here.



www.manaraa.com

Genesis and evolution of velocity gradients in developing turbulence 317

A brief review of equations and terms used in this study is given first, followed by
the analysis of the JPDF of the VGT invariants.

The VGT Aij= ∂ui/∂xj can be decomposed into symmetric and antisymmetric parts.
The symmetric part is the strain-rate tensor sij, and the antisymmetric part is the
rotation-rate tensor Ωij (which can be written in terms of vorticity components ωk as
Ωij =−εijkωk/2). The characteristic equation of the velocity gradient tensor is,

Λ3
i + PΛ2

i +QΛi + R= 0, (5.12)

where Λi (i= 1, 2, 3) are the three eigenvalues and P, Q, R are the first, second and
third invariants respectively. For incompressible flow, the first invariant is zero (P= 0).
The second and third invariants are,

Q= 1
4(ωiωi − 2sijsij), (5.13)

R=− 1
3

(
sijsjkski + 3

4ωiωjsij
)
. (5.14)

The discriminant of the cubic equation (5.12) is

D= 27
4 R2 +Q3 (5.15)

and if it is negative, all three eigenvalues are real and distinct. The invariants of the
strain-rate tensor are obtained by setting ωi = 0 in (5.13) and (5.14), and they are

Qs =− 1
2 sijsij, (5.16)

Rs =− 1
3 sijsjkski. (5.17)

Finally, the single invariant of the rotation-rate tensor is acquired by putting sij= 0
in (5.13), and it is,

Qw = 1
4ωiωi. (5.18)

The study of invariants of the velocity gradient, strain-rate and rotation-rate tensors
often reveal information regarding the local topology of the flow field. Furthermore,
they also contain information regarding vortex stretching and rotation. They have been
studied extensively for various turbulent flows.

Laizet et al. (2013) were the first to analyse the spatial evolution of Q–R diagrams
in a spatially evolving turbulent flow behind a fractal grid. They found that these
diagrams obtain their usual teardrop shape well downstream of the point where the
second-order structure function acquires its 2/3 power law in the production region.
Gomes-Fernandes et al. (2014) reported from their particle image velocimetry (PIV)
study that the Q–R diagram clearly gets its usual shape only in the decay region. Zhou
et al. (2016b) also presented Q–R diagrams in the production region of a single square
grid-element and confirmed that they are qualitatively different from the well-known
teardrop shape which appears in the decay region. Information on the Qs–Rs diagram
for a single square grid-element turbulence is still missing.
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x/x∗ 0.1 0.25 0.35 0.5 0.75 0.95

〈Q〉/〈sijsij〉 −0.5 −0.32 −0.08 0 0 0
〈R〉/〈sijsij〉3/2 0.02 0.14 0.01 0 0 0

TABLE 3. Values of the normalised mean 〈Q〉 and 〈R〉 at different locations along the
grid-element centreline.

5.4.1. Q–R diagrams
In this section we study the joint PDFs of Q–R, i.e. Q–R diagrams. To interpret Q–R

diagrams, one needs to rewrite (5.14) as 3R=−sijsjkski − ωiωjsij/4− ωiωjsij/2. This
reveals that 3R is the difference between two production terms: the term −sijsjkski −
ωiωjsij/4 (the average of which appears in the equation for 〈sijsij〉/2, equation (5.7))
and the term ωiωjsij/2 (the average of which appears in the equation for 〈ωiωi〉/4,
i.e. (5.4) multiplied by 1/2 on both sides). The reason for considering the production
of ωiωi/4 rather than ωiωi/2 lies in the fact that Q = ωiωi/4 − sijsij/2. Hence in a
Q–R plot, the upper left quadrant (where Q> 0 and R< 0) represents events in which
ωiωi/4 dominates over sijsij/2 and the production of ωiωi/4 also dominates over the
production of sijsij/2. In the upper right quadrant (where Q > 0 and R > 0) ωiωi/4
dominates over sijsij/2 but the production of sijsij/2 dominates over the production of
ωiωi/4. The lower left quadrant (where Q< 0 and R< 0) represents events in which
sijsij/2 dominates over ωiωi/4 and where the production of sijsij/2 also dominates over
the production of ωiωi/4; and finally, the lower right quadrant (where Q<0 and R>0)
includes events where sijsij/2 dominates over ωiωi/4, but the production of ωiωi/4
dominates over the production of sijsij/2. In many turbulent flows the Q–R diagram
has a teardrop shape (Chong, Perry & Cantwell 1990; Tsinober 2009). This shape
reflects strong correlations between Q< 0 and R> 0 on one hand and between Q> 0
and R< 0 on the other.

The values of normalised 〈Q〉 and 〈R〉 are shown in table 3. It can be seen from
the table that the values of 〈Q〉 are not zero in the region x/x∗ 6 0.35, making it
absolutely clear that this region is not homogeneous, even for small-scale statistics.
The table shows that, on average, strain product dominates over enstrophy in this
region as already seen in § 5.1. Strain is the first small-scale velocity gradient quantity
generated along the grid-element centreline by the mechanism discussed in § 5.1. Note,
however, that this strain dominance progressively disappears once vorticity is brought
to the grid-element centreline. By the end of the production region, the average of
both invariants is 0, which is the expected result for homogeneous turbulence.

Figure 16 shows the JPDF of Q and R at six different locations. The blue line in
this figure is the locus of points where D= 0 (5.15). The invariants are normalised by
the mean strain product at that location. In the region where the wakes have not met
and the flow is irrotational (x/x∗=0.1), the shape of the Q–R diagram is very different
from the usual teardrop shape, and contains no positive Q values (figure 16a). This
observation is consistent with and strengthens the previous observation that the flow
in the initial part of the grid-element centreline is mostly irrotational, and Q < 0 at
all x/x∗< 0.2. In this region, the VGT is almost equal to the strain-rate tensor, which
is a symmetric tensor, and therefore all the eigenvalues are real. This explains why
all isolines are located below the D = 0 curve, in an area where D < 0. The shape
of JPDF at x/x∗ < 0.1 is similar to the one reported for the non-turbulent side of
turbulent/non-turbulent interfaces (da Silva & Pereira 2008). The shape of figure 16(a)
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FIGURE 16. (Colour online) Joint PDF of Q and R at different locations along the
grid-element centreline: (a) x/x∗ = 0.1, (b) x/x∗ = 0.25, (c) x/x∗ = 0.35, (d) x/x∗ = 0.5,
(e) x/x∗ = 0.75, ( f ) x/x∗ = 0.95. The isocontours range from 101 to 10−2.

also ascertains that the flow in the initial part of the grid-element centreline is indeed
non-turbulent.

Although the wakes have already met by x/x∗ = 0.25 and the energy spectrum
exhibits a short-range approximate −5/3 power-law exponent, the Q–R diagram, as
shown in figure 16(b), does not show its usual shape. However, it is interesting
to note that Q < 0 already correlates with R > 0 with a visible tail in the Q–R
diagram at x/x∗ = 0.25. This is also the point on the grid-element centreline where
strain self-amplification and vortex stretching just started being significant, and the
turbulence is still developing, non-Gaussian and inhomogeneous. The undeveloped
shape in the Q–R diagram in figure 16(b) for x/x∗ = 0.25 is due to the fact that
the strain still dominates enstrophy. It should be noted that the undeveloped Q–R
diagram in the production region reported by Gomes-Fernandes et al. (2014) (see
their figure 17a) correlates with an indistinguishable or slight dominance of vortex
stretching over vortex compression while our results show a clear dominance of
vortex stretching over compression.

From x/x∗ = 0.35 onwards the Q–R diagrams evolve towards their usual teardrop
shape as Q starts to take both positive and negative values, and the correlation between
Q > 0 and R < 0 starts to appear as seen in figure 16(c). This observation suggests
that the preference for vortex stretching increases from the production to the decay
region.

In this study, the Q–R diagram is observed to attain its usual shape around
x/x∗ = 0.5 i.e. at the end of the production region, as seen in figure 16(d). Our
results agree with the numerical results of Laizet et al. (2013) that the Q–R diagram
obtains its teardrop shape by the end of the production region and well downstream
of the place where the −5/3 spectra and the 2/3 structure functions first appear.
Zhou et al. (2014a, 2015) obtained the teardrop shape closer to the grid-element, at
x/x∗= 0.16. This discrepancy could be due to the difference noticed in the behaviour
of skewness and flatness which is the result of different blockage ratios in these two
studies (0.11 as opposed to 0.2 in the present study). Also, this is the first study that



www.manaraa.com

320 I. Paul, G. Papadakis and J. C. Vassilicos

(a) (b) (c)

(d ) (e) ( f )

–0.1

–0.2

–0.3

–0.4

 –0.5

0

0–0.10 –0.05 0.05 0.10

–0.1

–0.2

–0.3

–0.4

 –0.5

0

0–0.10 –0.05 0.05 0.10

–0.1

–0.2

–0.3

–0.4

 –0.5

0

0–0.10 –0.05 0.05 0.10

–0.1

–0.2

–0.3

–0.4

 –0.5

0

0–0.10 –0.05 0.05 0.10

–0.1

–0.2

–0.3

–0.4

 –0.5

0

0–0.10 –0.05 0.05 0.10

–0.1

–0.2

–0.3

–0.4

 –0.5

0

0–0.10 –0.05 0.05 0.10

FIGURE 17. (Colour online) Joint PDF of Qs and Rs at different locations along the
grid-element centreline: (a) x/x∗ = 0.1, (b) x/x∗ = 0.25, (c) x/x∗ = 0.35, (d) x/x∗ = 0.5,
(e) x/x∗ = 0.75, ( f ) x/x∗ = 0.95. The isocontours range from 101 to 10−2. The four lines
from the left to the right in each panel correspond to λ1 : λ2 : λ3 = 2 :−1 :−1, 1 : 0 :−1,
3 : 1 :−4 and 1 : 1 :−2.

reports the appearance of a teardrop shape in the Q–R diagram for a very low Reλ
homogeneous fully developed turbulence (see figures 16e and 16f ).

5.4.2. Qs–Rs diagrams and strain-rate eigenvalue ratios
We assume that the strain-rate eigenvalues are λi(i = 1, 2, 3) with λ1 > λ2 > λ3

and λ1 + λ2 + λ3 = 0 for an incompressible flow. To interpret Qs–Rs diagrams, note
that Rs can be written in terms of λi as Rs = −λ1λ2λ3. One might therefore expect
some tendency for sheet-like vortex structures if Rs > 0 (two extensive strain-rate
eigenvalues) and some tendency for tube-like vortex structures if Rs < 0 (two
compressive strain-rate eigenvalues).

Defining a= λ2/λ1, the following equation can be obtained:

Rs = (−Qs)
3/2a(1+ a)(1+ a+ a2)−3/2. (5.19)

The flow geometry can be defined in terms of ratios of the eigenvalues of strain-rate
tensor. The ratio λ1 : λ2 : λ3 = 2 :−1 :−1 (a = −1/2) corresponds to axisymmetric
contraction, 1 : 0 :−1 (a = 0) is for a two-dimensional flow, 3 : 1 :−4 (a = 1/3)
represents biaxial stretching, and 1 : 1 :−2 (a= 1) is for axial stretching (da Silva &
Pereira 2008).

Figure 17 shows the JPDF of Qs and Rs in the production and decay regions.
There is no real preference for positive or negative Rs in the irrotational flow region
as shown in figure 17(a). The contour lines align with the ratio of 1 : 0 :−1 at
x/x∗ = 0.1 which shows that the irrotational flow is largely two-dimensional. From
x/x∗ = 0.25 onwards the JPDF starts showing a tendency towards positive Rs though
the preference is very small at x/x∗ = 0.25 (figure 17b). From x/x∗ = 0.35 onwards
the JPDF looks similar to what is observed for homogeneous isotropic turbulence
with larger probabilities occurring between λ1 : λ2 : λ3 = 3 : 1 :−4 and 1 : 1 :−2.
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FIGURE 18. (Colour online) (a) Mean trajectory of Qs and Rs in the phase map.
Triangles represent the production region and circles the decay region. (b) Eigenvalue
ratios λ1 : λ2 : λ3 along the grid-element centreline.

Here also, the universal characteristics of Qs–Rs diagram is obtained for a very
low Reλ homogeneous turbulence of our decay region (see figures 17e and 17f ).

Figure 18 shows the trajectory of 〈Qs〉 and 〈Rs〉 in their associated phase map. In
figure 18(a), the triangles represent locations in the production region as one moves
downstream along the grid-element centreline. The value of 〈Rs〉 grows from being
negligibly small in the near-grid-element region to being slightly above 0.1〈sijsij〉 at
x/x∗ ≈ 0.4 then dropping again as the turbulence peak location is approached. The
circles represent locations in the decay region. This phase map can also be plotted in
terms of x/x∗ as shown in figure 18(b). The first observation from these figures is that
the average invariant values are in the quadrant of Qs< 0 and Rs> 0, and that they are
mostly on the line a= 1 for 06 x/x∗< 0.4, and mostly on or near the line a= 1/3 for
the decay region. The transition between axial stretching to biaxial stretching occurs in
the region of 0.4< x/x∗< 0.5. The eigenvalue ratio in this transitional region is close
to 2 : 1 :−3. Note that the most probable eigenvalue ratios obtained in most previous
studies are 3 : 1 :−4 and 2 : 1 :−3 (da Silva & Pereira 2008).

5.5. Factors affecting enstrophy production and strain self-amplification
Finally in this subsection, we analyse the factors that affect the important velocity
gradient terms. For an incompressible flow, the enstrophy production and strain self-
amplification can be written in terms of the strain-rate eigenvalues, and the alignments
between the vorticity vector and the strain-rate eigenvectors. More specifically:

ωiωjsij =ω2λ1 cos2(ω, e1)+ω2λ2 cos2(ω, e2)+ω2λ3 cos2(ω, e3), (5.20)

where ω2 =ωiωi and

sijsjkski = λ3
1 + λ3

2 + λ3
3. (5.21)

From these equations, it can be observed that the enstrophy production and strain
self-amplification depend on the strain-rate eigenvalues, while enstrophy production
also depends on the alignments between vorticity and strain-rate eigenvectors.
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x/x∗ 0.1 0.25 0.35 0.5 0.75 0.95 Field
experiment

HIT

−〈λ3
1〉/〈sijsjkski〉 0.45 0.53 0.91 1.24 0.89 0.87 1.62 0.9

−〈λ3
2〉/〈sijsjkski〉 0.05 0.07 0.06 0.06 0.06 0.06 0.05 0.06

−〈λ3
3〉/〈sijsjkski〉 −1.50 −1.60 −1.97 −2.30 −1.95 −1.93 −2.67 −1.96

TABLE 4. Values of 〈λ3
i 〉 (i= 1, 2, 3) normalised by the mean strain self-amplification at

different stations along the grid-element centreline. The field experiment data are taken
from Kholmyansky, Tsinober & Yorish (2001), and the homogeneous isotropic turbulence
data are taken from the periodic DNS of Onishi, Baba & Takahashi (2011) for Reλ = 80.

5.5.1. Eigenvalues of strain-rate tensor and their contribution to enstrophy production
The statistics of the strain-rate eigenvalues are analysed in this section to shed more

light onto the mechanisms of enstrophy production and strain self-amplification. This
statistical analysis can also help to explain the discrepancy observed in the PDF of
ωiωjsij with respect to the PIV study of Gomes-Fernandes et al. (2014).

Table 4 gives the values of 〈λ3
i 〉 (i= 1, 2, 3) normalised by −〈sijsjkski〉 which is the

positive source term in the strain-product equation as shown in figure 10(b). From
table 4 it can be seen that both 〈λ3

1〉 and 〈λ3
2〉 are positive i.e. there are two extensive

strain-rate eigenvalues, an universal feature of three-dimensional turbulent flows. The
tendency of the intermediate eigenvalue to be statistically more positive than negative,
i.e. 〈λ3

2〉 > 0 and 〈λ2〉 > 0, was predicted for homogeneous isotropic turbulence by
Betchov (1956), first observed in the DNS of Ashurst et al. (1987) and then confirmed
by many other studies (e.g. Tsinober et al. 1992; She, Jackson & Orszag 1991; Su
& Dahm 1996). This universal turbulence result is found to be valid even for this
very low Reλ turbulence. Since −〈sijsjkski〉 = −(〈λ3

1〉 + 〈λ3
2〉 + 〈λ3

3〉), the positive sign
of −〈sijsjkski〉 originates from −〈λ3

3〉. Therefore, the strain self-amplification process
is associated, in a time-averaged sense, with a fluid mechanical picture involving
stretching and compressing velocity gradients into sheets. The values reported in
table 4 approximate those of homogeneous isotropic turbulence in the decay region,
although there seems to be a deviation from the measurements taken in very high
Reynolds number field experiments. In the production region, the values of 〈λ3

i 〉
normalised by −〈sijsjkski〉 are similar to those reported by Gomes-Fernandes et al.
(2014) for i = 2 but up to an order of magnitude smaller for i = 1, 3. The main
difference between our production region and that of Gomes-Fernandes et al. (2014)
is the Reynolds number, which is lower in our case, and the presence of irrotational
flow, which is prominent in our case given the turbulence generated by all the extra
fractal iterations on the fractal grid of Gomes-Fernandes et al. (2014). These fractal
iterations seem to greatly increase the intensity of the small-scale stretching and
compressing actions. Also, the downstream evolution of the values given in table 4
qualitatively agrees with that of Zhou et al. (2016a).

Attention is now turned to the PDFs of the strain-rate eigenvalues. As observed in
figure 19(a), in the irrotational part of the grid-element centreline, the PDFs of λ1
and λ3 are near mirror images of each other, and the PDF of λ2 is symmetric around
0. As the enstrophy production and strain self-amplification depend on the strain-rate
eigenvalues linearly (5.20) and to the power of three (5.21) respectively, any small
symmetry breaking in the PDFs of the strain-rate eigenvalues will be more pronounced
on the PDF of strain self-amplification than on the PDF of the enstrophy production.
This is the reason why the PDF of enstrophy production is perfectly symmetric, and
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FIGURE 19. (Colour online) PDF of strain-rate eigenvalues at different locations along
the grid-element centreline: (a) x/x∗= 0.1, (b) x/x∗= 0.25, (c) x/x∗= 0.35, (d) x/x∗= 0.5,
(e) x/x∗ = 0.75, ( f ) x/x∗ = 0.95.

the PDF of strain self-amplification is close to (but not perfectly) symmetric in the
irrotational flow region (figures 14a and 15a).

The PDF of λ2 becomes positively skewed at x/x∗ = 0.25 (figure 19b) where the
turbulence is inhomogeneous and the small-scale terms have just started developing,
which is also a characteristic feature of small-scale turbulence (Betchov 1975;
Ashurst et al. 1987; Ganapathisubramani, Lakshminarasimhan & Clemens 2008;
Gomes-Fernandes et al. 2014). In order to satisfy the incompressibility constraint
i.e. λ1 + λ2 + λ3 = 0, the PDF of λ3 becomes negatively skewed thus breaking
the mirror image symmetry with λ1. Qualitatively similar behaviour is observed
in all other locations as seen in figure 19(c–f ). It should be noted here that the
study of Gomes-Fernandes et al. (2014) observed symmetry in the PDF of λ2 in
the inhomogeneous production region. Our study, however, clearly shows that λ2 is
positively skewed. This is related to the discrepancy observed in the skewness of the
PDF of enstrophy production which depends on the skewness of the PDF of λ2. The
statistics of λ2 are further analysed at the end of this section. The tendency for the
intermediate strain-rate eigenvalue to skew towards positive is found to be true for
homogeneous turbulence of Reλ as low as 33 (figure 19f ).

The contribution of each eigenvalue and eigenvector to the enstrophy production
is shown in table 5. Note that 〈ω2λ1 cos2(ω, e1)〉 > 〈ω2λ2 cos2(ω, e2)〉 > 0 whereas
〈ω2λ3 cos2(ω, e3)〉< 0. This observation suggests that the most extensive eigenvector
of the strain-rate tensor is the most responsible for the positive enstrophy production.
The ratio 〈ω2λ1 cos2(ω, e1)〉/〈ω2λ2 cos2(ω, e2)〉 decreases from its value near
the grid-element to its value at the position of the turbulence peak. The ratio
−〈ω2λ1 cos2(ω, e1)〉/〈ω2λ3 cos2(ω, e3)〉 in the production and decay regions is 1.61 and
1.95 respectively. This indicates that the strength of vortex stretching over compression
is marginally weaker in the production region compared to the decay region. All three
time-averaged quantities in table 5 appear to have a tendency towards approaching
the reference HIT values in our restricted decay region, even though they do not
quite reach them. Also, this tendency towards reaching a universal value is faster in
our simulation compared to the values reported in Zhou et al. (2016a). Although the
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x/x∗ 0.1 0.25 0.35 0.5 0.75 0.95 Field exp. Grid HIT

〈ω2λ1 cos2(ω, e1)〉/〈ωiωjsij〉 — 1.29 0.94 0.86 0.87 0.86 1.44 1.17 0.74
〈ω2λ2 cos2(ω, e2)〉/〈ωiωjsij〉 — 0.51 0.58 0.61 0.58 0.58 0.47 0.39 0.62
〈ω2λ3 cos2(ω, e3)〉/〈ωiωjsij〉 — −0.80 −0.52 −0.47 −0.45 −0.44 −0.97 −0.56 −0.36

TABLE 5. Contribution of strain-rate eigenvalues to enstrophy production along the
grid-element centreline. The values are normalised by mean enstrophy production. The
field experiment data are taken from Kholmyansky et al. (2001), grid experiment data are
from Tsinober (2009) and the homogeneous isotropic turbulence data are from Onishi et al.
(2011).

value of 〈ω2λ2 cos2(ω, e2)〉 in the production region is closer to the value reported
in Gomes-Fernandes et al. (2014), the other two components are smaller. The reason
for this discrepancy is the pronounced irrotational region in our flow configuration
which results in weaker stretching/compressing events compared to Gomes-Fernandes
et al. (2014) as noted earlier.

The PDFs of the individual components of enstrophy production are depicted
in figure 20. All the components are small close to the grid-element (figures 20a
and 20b) because of the small values of vorticity. The PDF of ω2λ2 cos2(ω, e2) is
nearly symmetric only at x/x∗ = 0.1 as seen in figure 20(a). The positively skewed
PDF of λ2 in all other locations (figure 19b–f ) is expected to result into positively
skewed PDFs of ω2λ2 cos2(ω, e2) as indeed observed in figure 20(b–f ). The tails of
the PDFs of ω2λ1 cos2(ω, e1) and ω2λ3 cos2(ω, e3) are wider in the production region
but they become more narrow in the decay region. This indicates that strong and rare
vortex stretching and compressing events are more prevalent in the production region
than in the decay region.
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FIGURE 21. (Colour online) Joint PDF of the normalised intermediate strain-rate
eigenvalue with Qs and Qw at x/x∗= 0.1, 0.25 and 0.95 along the grid-element centreline.
The isocontours range from 10−1 to 10−3.

5.5.2. Analysis of the intermediate eigenvalue
As observed in table 4, the normalised extensive (λ1) and compressive (λ3)

strain-rate eigenvalues vary significantly along the grid-element centreline, while
the intermediate one (λ2) remains almost constant. Moreover, the statistical behaviour
of this particular eigenvalue is observed to be different in the production region when
compared to the PIV study of Gomes-Fernandes et al. (2014). This also causes a
discrepancy in the PDF of enstrophy production as the statistical characteristics of
ωisijωj depend on λ2. These factors prompt further analysis of λ2.

Although various normalisations are available (Ganapathisubramani et al. 2008), we
follow Ashurst et al. (1987) and normalise λ2 as

λ∗2 =
√

6λ2√
λ2

1 + λ2
2 + λ2

3

. (5.22)

With this normalisation, λ∗2 is in the interval [−1,+1] owing to the incompressibility
constraint. The extreme values +1, −1 represent axisymmetric expansion and
contraction respectively.

The joint PDFs of λ∗2 with Qs (= sijsij/2) and Qw (= ωiωi/4) are shown
in figure 21 for three locations along the grid-element centreline: close to the
grid-element, location where the −5/3 slope in energy spectrum is first observed
for the inhomogeneous turbulence, and in the decay region. As can be seen, λ∗2
is indeed bounded by ±1, and this gives further confidence in our data and the
procedure followed in normalising and computing the joint PDF. Close to the
grid-element (where x/x∗ = 0.1, see figure 21a), the JPDFs of λ∗2 − Qs and λ∗2 − Qw
are slightly skewed towards positive values of λ2

∗. This indicates that although
〈λ2〉 ≈ 0, the normalised eigenvalue 〈λ∗2〉> 0. Further downstream, the JPDFs become
more positively skewed (figures 21b and 21c). Notice that the asymmetry is more
pronounced in the λ∗2–Qs plane compared to λ∗2 − Qw at x/x∗ = 0.25. This could be
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(e) x/x∗ = 0.95.

perhaps due to the fact that at this location strain strongly dominates enstrophy (see
table 3).

It is interesting to notice that in the decay region where the turbulence is most
homogeneous, the JPDF peaks at λ∗2 close to 0.5, in very good agreement with
previous studies including some which concerned periodic turbulence (Betchov 1975;
Ashurst et al. 1987; Ganapathisubramani et al. 2008; Gomes-Fernandes et al. 2014).

5.5.3. Alignment of vorticity vector and strain-rate eigenvectors
Finally, we discuss the geometric alignments between the vorticity vector and the

eigenvectors of the strain-rate tensor as they influence the enstrophy production term
(see (5.20)).

Figure 22 shows the PDFs of the absolute value of cosine of the angle between the
vorticity vector and the strain-rate eigenvectors. These alignments are considered at
all locations except at x/x∗ = 0.1 where the magnitude of vorticity is very small. At
x/x∗ = 0.25, where the turbulence is inhomogeneous and strain dominates enstrophy,
both the extensive and intermediate strain-rate eigenvectors align with the vorticity
vector, although the alignment is weak. This behaviour differs from the universal
behaviour of strong alignment between the vorticity vector with the intermediate
strain-rate eigenvector in turbulent flows (Ashurst et al. 1987; Kerr 1987). Further
downstream along the grid-element centreline, the alignment of both the extensive
strain-rate eigenvectors with vorticity becomes stronger within the inhomogeneous
production region (figures 22b and 22c). This evidence suggests that, both the positive
strain-rate eigenvectors act effectively to produce enstrophy in the production region,
and can explain the rapid growth of the vortex stretching term from x/x∗ = 0.25
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to the turbulence peak location (see figure 8a). The universal alignment behaviour
is encountered only in the decay region (figures 22d and 22e) even though the
local Reλ there is only between 30 and 40. In this region, the compressive strain-rate
eigenvector aligns perpendicularly to vorticity and the extensive strain-rate eigenvector
is indifferent to vorticity. Zhou et al. (2016a) also find that the alignment with the
intermediate eigenvector is gradual.

Why is the alignment behaviour different in the production region? As explained
in § 5.1.3, vorticity is produced at the grid-element bars, is shed in to the wake, and
then it is transported towards the grid-element centreline by turbulent fluctuations.
There it finds itself in an already developed fluctuating strain field which has been
produced due to the action of the pressure Hessian. In other words, most of the strain
field at about x/x∗ = 0.2 or so on the grid-element centreline has not been created
by the vorticity, and the two fields are uncoupled. Further downstream, vorticity and
strain start to interact but this interaction is gradual and is completed only in the
decay region, where the alignments show the universal behaviour.

This scenario is consistent with the findings of Hamlington, Schumacher & Dahm
(2008a). Following Jiménez (1992), these authors decomposed the fluctuating strain
field at every point in the domain into two components: one (local) component
produced by the local vorticity field around the point in question and another
(non-local or background) component produced by vorticity further away. Their
numerical simulations in forced, homogeneous isotropic turbulence at Reλ = 107
demonstrated that while the intermediate strain-rate eigenvector of the combined
strain aligns with the vorticity vector, it is the most extensive eigenvector of the
background strain component that aligns with vorticity. Therefore, when most of the
strain is not produced by the vorticity, as is the case in much of the production region,
it acts as background strain and the alignment differs from the well-known universal
behaviour. As a result, the extensional strain-rate eigenvector is more strongly aligned
with vorticity.

In the present study, fluctuating vorticity is absent for x/x∗ < 0.2, so the alignment
cannot be computed. Once vorticity is present, the results show equal tendency for
alignment between the vorticity vector and the two positive strain-rate eigenvectors.
The above analysis suggests that the already existing and dominant background strain
(which is the result of non-local pressure) is responsible for the alignment of the
most extensive strain-rate eigenvector with vorticity and that this effect coexists in
this region with the alignment of the vorticity with its own strain field’s intermediate
eigenvector. Indeed, Hamlington, Schumacher & Dahm (2008b) found that the
intermediate eigenvector of the vorticity-induced strain tensor aligns very strongly
with vorticity. As fluid elements move downstream towards the peak of turbulence
intensity and into the decay region, the effect of the vorticity on the strain field
becomes stronger and eventually dominates over the background strain, resulting in
the universal alignment behaviour.

We close this section by comparing our alignment results with those of the
experimental study of Gomes-Fernandes et al. (2014). They found the universal
alignment behaviour even in the middle of the production region. It has to be borne
in mind, however, that there are two significant differences compared to our set-up.
Firstly, they studied a space-filling fractal grid and not a single square grid-element.
The fractal grid has small and thin bars located close to and around the grid-element
centreline that shed wakes which meet much closer to the grid-element compared to
the large-scale wakes in our case. Secondly, the free-stream turbulence intensity was
2.8 % for the streamwise velocity component and 4.4 % for the spanwise velocity
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component in their experiment. These two differences indicate that vorticity was
already present much closer to the grid-element in their case compared to ours,
and therefore strain and vorticity were very early much more closely coupled. This
explains why they see the universal alignment even in the first location they studied,
which was in the middle of the production region.

6. Conclusions
We have investigated the genesis and evolution of velocity gradients for a spatially

developing flow generated by a single square grid-element (that resembles a hollow
square plate) using DNS. This element is a fundamental building block to both the
classical and fractal grids. The flow along the grid-element centreline is initially
irrotational (i.e. non-turbulent), but it becomes turbulent later due to the infiltration
of the turbulent vortical wakes from the grid-element bars. The dynamics of the
antisymmetric and symmetric parts of the velocity gradient tensor has been discussed
for this developing flow using the transport equations of mean turbulent enstrophy and
strain product. As these transport equations contain third-order moments of velocity
gradients, the simulation has been run for a low inlet Reynolds number to make
sure these equations are well balanced. This feature allows us to demonstrate how
universal turbulent properties appear even at low Reynolds numbers.

In agreement with the previous studies where the Reynolds number was significantly
or very much higher (Laizet et al. 2013; Gomes-Fernandes et al. 2015; Laizet et al.
2015b) the turbulence energy spectrum exhibits its best defined −5/3 power-law
shape midway between the grid-element and the turbulence peak location on the
grid-element centreline. At this point, small-scale terms such as the mean enstrophy
and mean strain product have only started developing, and the value of Reλ is only
approximately 20 or so, yet the −5/3 slope in the energy spectrum is observed for
approximately half a decade of frequencies. The higher Reynolds number experiments
and simulations of Gomes-Fernandes et al. (2015) and Laizet et al. (2015b) report a
−5/3 power-law-shaped energy spectrum over more than a decade of frequency at
the same location. This location is at the heart of the production region where the
turbulence is highly inhomogeneous and non-Gaussian as seen, for example, from
the contours of mean streamwise velocity (figure 3b) and the skewness values of
fluctuating streamwise velocities (figure 5a).

Following the grid-element centreline from the grid-element and moving downstream,
the fluctuating strain is created initially by actions of the pressure Hessian, which is
then transported by turbulent fluctuations. Self-production of strain starts very closely
after that (figure 11). The end of this strain-dominated region is marked by excursions
of vorticity from the sides which is brought towards the grid-element centreline from
the wakes of the bars by the turbulent fluctuations. The already existing fluctuating
strain starts to act on this vorticity to cause the production of enstrophy through vortex
stretching (figure 8b) and this is where the −5/3 energy spectrum appears, definitely
before vortex stretching has had the time to fully develop. Note that terms involving
interactions between mean and fluctuating quantities are negligible throughout the
grid-element centreline even though the turbulence is highly inhomogeneous in the
production region. A novel observation, not reported in previous works on this
particular topic, is that the strain field has a statistically axial stretching form in the
production region which, within a short space slightly upstream of the turbulence
peak, morphs into a statistically biaxial stretching form in the decay region.

The alignments between fluctuating vorticity and the eigenvectors of the fluctuating
strain-rate tensors also morph from one behaviour to another from the production to
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the decay regions in this spatially developing flow. In the production region, vorticity
is aligned with both eigenvectors corresponding to positive eigenvalues whereas the
alignment is only with the eigenvector corresponding to the weakest of the two
positive eigenvalues in the decay region.

In conclusion, the characteristics of small-scale turbulence generated by single
square grid-element at relatively low inlet Reynolds number are similar to those
of a fractal grid at high Reynolds number only in the decay region. Important
differences are detected in the production region. Firstly, the stretching/compressing
events are much stronger in the fractal grid due to the presence of small bars
close to the grid-element centreline that create small-scale turbulence. This leads
to differences in the PDFs of the intermediate eigenvalue of the strain-rate tensor
and the associated term that quantifies the contribution of this eigenvalue to the
enstrophy production. This difference is also reflected in the JPDF between Q and
R. Secondly, the alignment characteristics of vorticity vector with the strain-rate
eigenvectors are different due to the prevalence of irrotational flow strain in the
quite extended strain-dominated subregion of the production region, a feature which
is absent in the experiments of Gomes-Fernandes et al. (2014). Besides, some of
the universal turbulent flow characteristics, such as: (i) the statistical behaviours of
enstrophy production, strain self-amplification, and strain-rate eigenvalues, (ii) the
shapes of Q–R and Qs–Rs diagrams and (iii) the geometrical alignments, that are
recorded for very high Reynolds number classical grid experiments and the other
studies of isotropic homogeneous turbulence are also detected in our far downstream
decay region of the square grid-element where the flow is fully turbulent and the
value of Reλ is as low as 33.
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LAIZET, S., NEDIĆ, J. & VASSILICOS, J. C. 2015b The spatial origin of −5/3 spectra in grid-
generated turbulence. Phys. Fluids 27 (6), 065115.

LAIZET, S., VASSILICOS, J. C. & CAMBON, C. 2013 Interscale energy transfer in decaying turbulence
and vorticity–strain-rate dynamics in grid-generated turbulence. Fluid Dyn. Res. 45 (6), 061408.

LE, H., MOIN, P. & KIM, J. 1997 Direct numerical simulation of turbulent flow over a backward-facing
step. J. Fluid Mech. 330, 349–374.

LU, L. & PAPADAKIS, G. 2011 Investigation of the effect of external periodic flow pulsation on a
cylinder wake using linear stability analysis. Phys. Fluids 23 (9), 094105.

LU, L. & PAPADAKIS, G. 2014 An iterative method for the computation of the response of linearised
Navier–Stokes equations to harmonic forcing and application to forced cylinder wakes. Intl J.
Numer. Meth. Fluids 74 (11), 794–817.

MANSOUR, N. N., KIM, J. & MOIN, P. 1988 Reynolds-stress and dissipation-rate budgets in a
turbulent channel flow. J. Fluid Mech. 194, 15–44.

MAXEY, M. R. 1987 The velocity skewness measured in grid turbulence. Phys. Fluids 30 (4),
935–938.



www.manaraa.com

Genesis and evolution of velocity gradients in developing turbulence 331

MAZELLIER, N. & VASSILICOS, J. C. 2010 Turbulence without Richardson–Kolmogorov cascade.
Phys. Fluids 22 (7), 075101.

MELINA, G., BRUCE, P. J. K. & VASSILICOS, J. C. 2016 Vortex shedding effects in grid-generated
turbulence. Phys. Rev. Fluids 1 (4), 044402.

MOIN, P. & MAHESH, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu.
Rev. Fluid Mech. 30 (1), 539–578.

NORBERG, C. 1993 Flow around rectangular cylinders: pressure forces and wake frequencies. J. Wind
Engng Ind. Aerodyn. 49 (1), 187–196.

ONISHI, R., BABA, Y. & TAKAHASHI, K. 2011 Large-scale forcing with less communication in
finite-difference simulations of stationary isotropic turbulence. J. Comput. Phys. 230 (10),
4088–4099.

PAPADAKIS, G. 2011 New analytic solutions for wave propagation in flexible, tapered vessels with
reference to mammalian arteries. J. Fluid Mech. 689, 465–488.

RHIE, C. M. & CHOW, W. L. 1983 Numerical study of the turbulent flow past an airfoil with
trailing edge separation. AIAA J. 21 (11), 1525–1532.

SANDHAM, N. D. & TSINOBER, A. 2000 Kinetic energy, enstrophy and strain rate in near-wall
turbulence. Adv. Turbul. 8, 407–410.

SCHUMACHER, J., SCHEEL, J. D., KRASNOV, D., DONZIS, D. A., YAKHOT, V. & SREENIVASAN,
K. R. 2014 Small-scale universality in fluid turbulence. Proc. Natl Acad. Sci. USA 111 (30),
10961–10965.

SEOUD, R. E. & VASSILICOS, J. C. 2007 Dissipation and decay of fractal-generated turbulence.
Phys. Fluids 19 (10), 105108.

SHE, Z., JACKSON, E. & ORSZAG, S. A. 1991 Structure and dynamics of homogeneous turbulence:
models and simulations. Proc. R. Soc. Lond. A 434, 101–124.

DA SILVA, C. B. & PEREIRA, J. C. F. 2008 Invariants of the velocity-gradient, rate-of-strain, and
rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20 (5),
055101.

SIMMONS, L. F. G. & SALTER, C. 1934 Experimental investigation and analysis of the velocity
variations in turbulent flow. Proc. R. Soc. Lond. A 145 (854), 212–234.

SREENIVASAN, K. R. & ANTONIA, R. A. 1997 The phenomenology of small-scale turbulence. Annu.
Rev. Fluid Mech. 29 (1), 435–472.

SU, L. K. & DAHM, W. J. A. 1996 Scalar imaging velocimetry measurements of the velocity gradient
tensor field in turbulent flows. II. Experimental results. Phys. Fluids 8 (7), 1883–1906.

TAVOULARIS, S., CORRSIN, S. & BENNETT, J. C. 1978 Velocity-derivative skewness in small
Reynolds number, nearly isotropic turbulence. J. Fluid Mech. 88 (1), 63–69.

TAYLOR, G. I. 1938 Production and dissipation of vorticity in a turbulent fluid. Proc. R. Soc. Lond. A
196, 15–23.

TENNEKES, H. & LUMLEY, J. L. 1972 A First Course in Turbulence. MIT.
TOWNSEND, A. A. 1980 The Structure of Turbulent Shear Flow. Cambridge University Press.
TSINOBER, A. 2000 Vortex Stretching Versus Production of Strain/Dissipation, pp. 164–191. Cambridge

University Press.
TSINOBER, A. 2009 An Informal Conceptual Introduction to Turbulence. Springer.
TSINOBER, A., KIT, E. & DRACOS, T. 1992 Experimental investigation of the field of velocity

gradients in turbulent flows. J. Fluid Mech. 242, 169–192.
TSINOBER, A., SHTILMAN, L., SINYAVSKII, A. & VAISBURD, H. 1995 Vortex stretching and

enstrophy generation in numerical and laboratory turbulence. In Small-Scale Structures in
Three-Dimensional Hydrodynamic and Magnetohydrodynamic Turbulence, pp. 9–16. Springer.

VALENTE, P. C. & VASSILICOS, J. C. 2014 The non-equilibrium region of grid-generated decaying
turbulence. J. Fluid Mech. 744, 5–37.

WARHAFT, Z. & JAYESH 1992 Probability distribution, conditional dissipation, and transport of passive
temperature fluctuations in grid-generated turbulence. Phys. Fluids 4 (10), 2292–2307.

WEITEMEYER, S., REINKE, N., PEINKE, J. & HÖLLING, M. 2013 Multi-scale generation of turbulence
with fractal grids and an active grid. Fluid Dyn. Res. 45 (6), 061407.



www.manaraa.com

332 I. Paul, G. Papadakis and J. C. Vassilicos

ZHOU, Y., NAGATA, K., SAKAI, Y., ITO, Y. & HAYASE, T. 2015 On the evolution of the invariants
of the velocity gradient tensor in single-square-grid-generated turbulence. Phys. Fluids 27 (7),
075107.

ZHOU, Y., NAGATA, K., SAKAI, Y., ITO, Y. & HAYASE, T. 2016a Enstrophy production and dissipation
in developing grid-generated turbulence. Phys. Fluids 28 (2), 025113.

ZHOU, Y., NAGATA, K., SAKAI, Y., ITO, Y. & HAYASE, T. 2016b Spatial evolution of the helical
behavior and the 2/3 power-law in single-square-grid-generated turbulence. Fluid Dyn. Res.
48 (2), 021404.

ZHOU, Y., NAGATA, K., SAKAI, Y., SUZUKI, H., ITO, Y., TERASHIMA, O. & HAYASE, T. 2014a
Development of turbulence behind the single square grid. Phys. Fluids 26 (4), 045102.

ZHOU, Y., NAGATA, K., SAKAI, Y., SUZUKI, H., ITO, Y., TERASHIMA, O. & HAYASE, T. 2014b
Relevance of turbulence behind the single square grid to turbulence generated by regular-and
multiscale-grids. Phys. Fluids 26 (7), 075105.



www.manaraa.com

Reproduced with permission of copyright owner. Further
reproduction prohibited without permission.


	Genesis and evolution of velocity gradients in near-field spatially developing turbulence
	Introduction
	Geometrical details of the square grid-element
	Numerical method and computational parameters
	Comparison with experiments
	Results and discussion
	Budgets of turbulent kinetic energy, enstrophy and strain rate
	Turbulent kinetic energy balance
	Mean enstrophy balance
	Mean strain-product balance

	Energy spectra
	Enstrophy production and strain self-amplification
	Invariants of the velocity gradient tensor
	Q–R diagrams
	Qs–Rs diagrams and strain-rate eigenvalue ratios

	Factors affecting enstrophy production and strain self-amplification
	Eigenvalues of strain-rate tensor and their contribution to enstrophy production
	Analysis of the intermediate eigenvalue
	Alignment of vorticity vector and strain-rate eigenvectors


	Conclusions
	Acknowledgements
	References




